作为应用离心管柱滤器提取蛋白及亚细胞结构的先驱

英文特生物技术(北京)有限公司成功研发出五十多个全新的生命科学研究领域蛋白提取产品,其中具有多个特色产品,为蛋白提取分 离带来了新方案, 从原有的溶液法转换为柱式提取法。我公司产品 均具有快捷、易用、产量高及重复性好的特性。在短短几年中,产品 以其稳定的品质获得了世界各国越来越多的科研,药物开发及临床诊 断机构的青睐。



    订购信息:GO-037 / 5831.00元(20 Preps)

    Minute™ 高尔基体富集试剂盒 GO-037

    Minute™ Golgi Apparatus Enrichment Kit

    描述:

    高尔基体(Golgi apparatus)又称高尔基复合体或高尔基器,由一系列扁平堆叠的囊(池)组成。高尔基体是真核细胞中重要的细胞器,负责蛋白质和脂质的运输、修饰及包装到囊泡中,以运送到目标位置。高尔基体在不同细胞和组织类型中的数量和分布变化很大。获取高质量的高尔基体是研究其功能及与其他细胞器相互作用的重要第一步。传统分离高尔基体的方法是基于密度梯度超离心,需要大量的起始材料,并且方法冗长且耗时。与其他高尔基体分离试剂盒不同,本试剂盒采用离心管柱技术,操作简单、快速,只需少量起始材料,不需使用杜恩斯匀浆管和超高速离心,高度富集天然高尔基体。整个操作过程可以在2h内完成。

    提示:本试剂盒最终获取的高尔基体囊泡沉淀,如需进行蛋白实验需使用溶解液溶解后进行下游实验,根据不同下游实验推荐使用WA-009WA-010WA-011溶解液


    储存温度:

    4℃

    参考文献:GO-037文献列表
    • 1.Tan, X., Shi, L., Banerjee, P., Liu, X., Guo, H. F., Yu, J., ... & Creighton, C. J. (2020). A pro-tumorigenic secretory pathway activated by p53 deficiency in lung adenocarcinoma. The Journal of Clinical Investigation.

      2.Zhu, Y., Shao, F., Yan, W., Xu, Q., & Sun, Y. (2020). Inhibition of SHP2 ameliorates psoriasis by decreasing TLR7 endosome localization. medRxiv.

      3.Lita, A., Pliss, A., Kuzmin, A., Yamasaki, T., Zhang, L., Dowdy, T., ... & Larion, M. (2021). IDH1 mutations induce organelle defects via dysregulated phospholipids. Nature Communications, 12(1), 1-16.

      4.Tan, X., Banerjee, P., Shi, L., Xiao, G. Y., Rodriguez, B. L., Grzeskowiak, C. L., ... & Kurie, J. M. (2021). p53 loss activates prometastatic secretory vesicle biogenesis in the Golgi. Science Advances, 7(25), eabf4885.

      5.Tan, X., Banerjee, P., Liu, X., Yu, J., Lee, S., Ahn, Y. H., ... & Kurie, J. M. (2021). Transcriptional control of a collagen deposition and adhesion process that promotes lung adenocarcinoma growth and metastasis. JCI insight.

      6.Zhang, L., Li, R., Geng, R., Wang, L., Chen, X. X., Qiao, S., & Zhang, G. (2022). Tumor Susceptibility Gene 101 (TSG101) Contributes to Virion Formation of Porcine Reproductive and Respiratory Syndrome Virus via Interaction with the Nucleocapsid (N) Protein along with the Early Secretory Pathway. Journal of Virology, jvi-00005.

      7.Huang, F., Tang, X., Ye, B., Wu, S., & Ding, K. (2022). PSL-LCCL: a resource for subcellular protein localization in liver cancer cell line SK_HEP1. Database, 2022.

      8.Mondal, T., Shivange, G., Habieb, A., & Tushir-Singh, J. (2022). A Feasible Alternative Strategy Targeting Furin Disrupts SARS-CoV-2 Infection Cycle. Microbiology Spectrum, 10(1), e02364-21.

      9.Zhu, Y., Wu, Z., Yan, W., Shao, F., Ke, B., Jiang, X., ... & Sun, Y. (2022). Allosteric inhibition of SHP2 uncovers aberrant TLR7 trafficking in aggravating psoriasis. EMBO molecular medicine, 14(3), e14455.

      10.Zhong, W., Lin, W., Yang, Y., Chen, D., Cao, X., Xu, M., ... & Yan, D. (2022). An acquired phosphatidylinositol 4-phosphate transport initiates T-cell deterioration and leukemogenesis. Nature Communications, 13(1), 1-18.

      11.Ruiz-Rodado, V., Lita, A., & Larion, M. (2022). Advances in measuring cancer cell metabolism with subcellular resolution. Nature Methods, 1-16.

      12.Edwards-Hicks, J., Apostolova, P., Buescher, J. M., Maib, H., Stanczak, M. A., Corrado, M., ... & Pearce, E. L. (2023). Phosphoinositide acyl chain saturation drives CD8+ effector T cell signaling and function. Nature Immunology, 1-15.

      13.Tan, X., Xiao, G. Y., Wang, S., Shi, L., Zhao, Y., Liu, X., ... & Kurie, J. M. (2023). EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer. The Journal of Clinical Investigation.

      14.Liu, Y. Y., Bai, J. S., Liu, C. C., Zhou, J. F., Chen, J., Cheng, Y., & Zhou, B. (2023). The Small GTPase Rab14 Regulates the Trafficking of Ceramide from Endoplasmic Reticulum to Golgi Apparatus and Facilitates Classical Swine Fever Virus Assembly. Journal of Virology, e00364-23.

      15.Xiao, X., Shi, J., He, C., Bu, X., Sun, Y., Gao, M., ... & Zhang, J. (2023). ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy. Nature Communications, 14(1), 2859.

      16.Ye, G., Liu, H., Liu, X., Chen, W., Li, J., Zhao, D., ... & Huang, L. (2023). African Swine Fever Virus H240R Protein Inhibits the Production of Type I Interferon through Disrupting the Oligomerization of STING. Journal of Virology, e00577-23.

      17.Nelson, T. J., & Xu, Y. (2023). Sting and p53 DNA repair pathways are compromised in Alzheimer’s disease. Scientific Reports, 13(1), 8304.

      18.Zhu, Y., Lei, L., Wang, X., Jiang, Q., Loor, J. J., Kong, F., ... & Li, X. (2023). Low abundance of insulin-induced gene 1 contributes to SREBP-1c processing and hepatic steatosis in dairy cows with severe fatty liver. Journal of Dairy Science.

      19.Sherman, D. J., Liu, L., Mamrosh, J. L., Xie, J., Ferbas, J., Lomenick, B., ... & Deshaies, R. J. (2023). The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. bioRxiv, 2023-10.

      20.Tu, Yingfeng, Qin Yang, Min Tang, Li Gao, Yuanhao Wang, Jiuqiang Wang, Zhe Liu et al. "TBC1D23 mediates Golgi-specific LKB1 signaling." Nature Communications 15, no. 1 (2024): 1785.

      21.Ding, L., Huwyler, F., Long, F., Yang, W., Binz, J., Wernlé, K., ... & Wolfrum, C. (2024). Glucose controls lipolysis through Golgi PtdIns4P-mediated regulation of ATGL. Nature Cell Biology, 1-15.

      22.Liu, X., Chen, H., Ye, G., Liu, H., Feng, C., Chen, W., ... & Huang, L. (2024). African swine fever virus pB318L, a trans-geranylgeranyl-diphosphate synthase, negatively regulates cGAS-STING and IFNAR-JAK-STAT signaling pathways. PLoS pathogens, 20(4), e1012136.





    close
    close